
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 10 – File I/O

Prof. Jeremy Dixon

Based on concepts from: http://mcsp.wartburg.edu/zelle/python/ppics2/code/

www.umbc.edu

Last Class We Covered

• Using while loops

– Syntax

– Using them for interactive loops

• Two different ways to mutate a list

– append() and remove()

• Nested loops

• Two-dimensional lists (lists of lists)

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To learn about escape sequences

– Why we need them

– How to use them

• To be able to

– Open a file

– Read in its data

– Close it after it’s done

– Manipulate the file object

www.umbc.edu

Escape Sequences

www.umbc.edu

“Misbehaving” print() Function

• There are times when the print() function
doesn’t output exactly what we want

>>> print("I am 6 feet, 2 inches")

I am 6 feet, 2 inches

>>> print("I am 6'2"")

File "<stdin>", line 1

print("I am 6'2"")

^

SyntaxError: EOL while scanning string literal

http://learnpythonthehardway.org/book/ex10.html

www.umbc.edu

Special Characters

• Just like Python has special keywords…

– for, int, True, etc.

• It also has special characters

– single quote ('), double quote ("), etc.

www.umbc.edu

Backslash: Escape Sequences

• The backslash character (\) is used to
“escape” a special character in Python

– Tells Python not to treat it as special

• The backslash character goes in front of the
character we want to “escape”

>>> print("I am 6'2\"")

I am 6'2"

www.umbc.edu

Using Escape Sequences

• There are three ways to solve the problem of
printing out our height using quotes

>>> print("I am 6'2\"")

I am 6'2"

>>> print('I am 6\'2"')

I am 6'2"

>>> print("I am 6\'2\"")

I am 6'2"

www.umbc.edu

Using Escape Sequences

• There are three ways to solve the problem of
printing out our height using quotes

>>> print("I am 6'2\"")

I am 6'2“

>>> print('I am 6\'2"')

I am 6'2"

>>> print("I am 6\'2\"")

I am 6'2"

www.umbc.edu

Common Escape Sequences

http://learnpythonthehardway.org/book/ex10.html

Escape Sequence Purpose

\' Print a single quote

\" Print a double quote

\\ Print a backslash

\t Print a tab

\n Print a new line (“enter”)

""" Allows multiple lines of text
""" is not really an escape sequence, but is useful for printing quotes

www.umbc.edu

Escape Sequences Example
>>> tabby_cat = "\tI'm tabbed in."

>>> print(tabby_cat)

I'm tabbed in.

>>> persian_cat = "I'm split\non a line."

>>> print(persian_cat)

I'm split

on a line.

>>> backslash_cat = "I'm \\ a \\ cat."

>>> print(backslash_cat)

I'm \ a \ cat.

http://learnpythonthehardway.org/book/ex10.html

\t adds a tab

\n adds a newline

\\ adds a single backslash

www.umbc.edu

Escape Sequences Example
>>> fat_cat = """

... I'll do a list:

... \t* Cat food

... \t* Fishies

... \t* Catnip\n\t* Grass

... """

>>> print(fat_cat)

I'll do a list:

* Cat food

* Fishies

* Catnip

* Grass

http://learnpythonthehardway.org/book/ex10.html

www.umbc.edu

Escape Sequences Example
>>> fat_cat = """

... I'll do a list:

... \t* Cat food

... \t* Fishies

... \t* Catnip\n\t* Grass

... """

>>> print(fat_cat)

I'll do a list:

* Cat food

* Fishies

* Catnip

* Grass

http://learnpythonthehardway.org/book/ex10.html

when using triple quotes
("""), the times you hit
“enter” print as newlines

www.umbc.edu

Escape Sequences Example
>>> fat_cat = """

... I'll do a list:

... \t* Cat food

... \t* Fishies

... \t* Catnip\n\t* Grass

... """

>>> print(fat_cat)

I'll do a list:

* Cat food

* Fishies

* Catnip

* Grass

http://learnpythonthehardway.org/book/ex10.html

\t puts in a tab

\n adds a newline

www.umbc.edu

File Input/Output

www.umbc.edu

Why Use Files?

• Until now, the Python programs you've been
writing are pretty simple for input/output

– Type input at the keyboard

– Results (output) are displayed in the console

• This is fine for short and simple input…

– But what if we want to average 50 numbers,
and mess up when entering the 37th one?

– Start all over???

www.umbc.edu

What is File I/O?

• One solution is to read the information in
from a file on your computer

– You could even write information to a file

• This process is called File I/O

– "I/O" stands for "input/output“

– Python has built-in functions that make this easy

https://www.codecademy.com/courses/python-intermediate-en-OGNHh/0/1

www.umbc.edu

File I/O Example Usage

• “Read” in a file using a word processor

– File opened

–Contents read into memory (RAM)

– File closed

– IMPORTANT: Changes to the file are
made to the copy stored in memory,
not the original file on the disk

www.umbc.edu

File I/O Example Usage

• “Write” a file using a word processor

– (Saving a word processing file)

– Original file on the disk is reopened in a
mode that will allow writing

• This actually erases the old contents!

– Copy the version of the document stored in
memory to the original file on disk

– File is closed

www.umbc.edu

File Processing

• In order to do interesting things with files, we
need to be able to perform certain operations:

–Associate an external file with a program object

• Opening the file

–Manipulate the file object

• Reading from or writing to the file object

–Close the file

• Making sure the object and file match

www.umbc.edu

Syntax: Opening a File

www.umbc.edu

Syntax for open() Function

FILE_NAME

• This argument is a string the contains the
name of the file you want to access
– "input.txt"

– "numbers.dat"

– "roster.txt"

myFile = open(FILE_NAME [, ACCESS_MODE][, BUFFERING])

www.umbc.edu

Syntax for open() Function

ACCESS_MODE (optional argument)

• This argument is a string that determines
which of the modes the file is to be opened in

– "r" (open for reading)

– "w" (open for writing)

– "a" (open for appending)

myFile = open(FILE_NAME [, ACCESS_MODE][, BUFFERING])

www.umbc.edu

Syntax for open() Function

BUFFERING (optional argument)

• This argument is an integer that specifies to
desired buffer size for the file

– 0 (unbuffered)

– 1 (line buffered)

– >1 (buffer of approximately that size in bytes)

myFile = open(FILE_NAME [, ACCESS_MODE][, BUFFERING])

we won’t be using
buffering much (if
at all) in this class

www.umbc.edu

Examples of Using open()

• In general, we will use a command like:

myFile = open("FILENAME.txt")

• We will ignore the two optional arguments

myFile = open("scores.txt")

scores.txt

2.5 8.1 7.6 3.2 3.2

3.0 11.6 6.5 2.7 12.4

8.0 8.0 8.0 8.0 7.5

an example
input file

www.umbc.edu

File Processing: Reading

www.umbc.edu

Reading Files

name = open("filename")

– opens the given file for reading, and returns a file object

name.read() - file's entire contents as a string

name.readline() - next line from file as a string

name.readlines() - file's contents as a list of lines

– the lines from a file object can also be read using a for loop

>>> f = open("hours.txt")

>>> f.read()

'123 Susan 12.5 8.1 7.6 3.2\n

456 Brad 4.0 11.6 6.5 2.7 12\n

789 Jenn 8.0 8.0 8.0 8.0 7.5\n'

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

Escape
Sequences

www.umbc.edu

File Input Template
• A template for reading files in Python:

name = open("filename")

for line in name:

statements

>>> input = open("hours.txt")

>>> for line in input:

... print(line.strip()) # strip() removes \n

123 Susan 12.5 8.1 7.6 3.2

456 Brad 4.0 11.6 6.5 2.7 12

789 Jenn 8.0 8.0 8.0 8.0 7.5

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

strip() removes
leading and trailing

whitespace

www.umbc.edu

File Input Template

• Another way we can loop through a file is line
by line using a for loop

• This reads the first 5 lines of a file:

infile = open(someFile, "r")

for i in range(5):

line = infile.readline()

print line[:-1] Slicing is another way to strip
out the newline characters at

the end of each line

www.umbc.edu

File Processing
• Another option is to ask the user for a file name to open

• First, prompt the user for a file name

• Open the file for reading

printfile.py

Prints a file to the screen.

def main():

fname = input("Enter filename: ")

infile = open(fname,'r')

data = infile.read()

print(data)

main()

Notice that we
do not have a
way to check if
the file exists!

The file is read as one string
and stored in the variable data

www.umbc.edu

Exercise
• Write a program that goes through a file and reports the

longest line in the file

>>> longest.py

longest line = 42 characters

the jaws that bite, the claws that catch,

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

"carroll.txt"
Beware the Jabberwock, my son,

the jaws that bite, the claws that catch,

Beware the JubJub bird and shun

the frumious bandersnatch.

Example Input File:

Example Output:

www.umbc.edu

Exercise Solution

def main():

input = open("carroll.txt")

longest = ""

for line in input:

if len(line) > len(longest):

longest = line

print("Longest line =", len(longest))

print(longest)

main()

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

longest.py

www.umbc.edu

Splitting into Variables
• If you know the number of tokens, you can split()

them directly into a sequence of variables
var1, var2, ..., varN = string.split()

• May want to convert type of some tokens:

type(value)
>>> s = "Jessica 31 647.28"

>>> name, age, money = s.split()

>>> name

'Jessica'

>>> int(age)

31

>>> float(money)

647.28

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

www.umbc.edu

Exercise
• Suppose we have this hours.txt data:

123 Suzy 9.5 8.1 7.6 3.1 3.2

456 Brad 7.0 9.6 6.5 4.9 8.8

789 Jenn 8.0 8.0 8.0 8.0 7.5

• Compute each worker's total hours and hours/day
– Assume each worker works exactly five days

– Sample output:

Suzy ID 123 worked 31.4 hours: 6.3 / day

Brad ID 456 worked 36.8 hours: 7.36 / day

Jenn ID 789 worked 39.5 hours: 7.9 / day

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

www.umbc.edu

Exercise Answer

def main():
input = open("hours.txt")
for line in input:

id, name, mon, tue, wed, thu, fri = line.split()

cumulative sum of this employee's hours
hours = float(mon) + float(tue) + float(wed) + \

float(thu) + float(fri)

print(name, "ID", id, "worked", \
hours, "hours: ", hours/5, "/ day"

main()

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

www.umbc.edu

File Processing (Writing)

www.umbc.edu

Writing Files
name = open("filename", "w")

name = open("filename", "a")

– opens file for write (deletes previous contents), or

– opens file for append (new data goes after previous data)

name.write(str) - writes the given string to the file

name.close() - saves file once writing is done

>>> out = open("output.txt", "w")
>>> out.write("Hello, world!\n")
>>> out.write("How are you?")
>>> out.close()

>>> open("output.txt").read()
'Hello, world!\nHow are you?'

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

www.umbc.edu

Exercise

• Write code to read a file of gas prices in USA
and Belgium:

8.20 3.81 3/21/11

8.08 3.84 3/28/11

8.38 3.92 4/4/11

...

• Output the average gas price for each country
to an output file named gasout.txt

From: https://courses.cs.washington.edu/courses/cse142/11au/python/06-files.ppt

www.umbc.edu

File Processing

• When done with the file, it needs to be closed.

• Closing the file causes any outstanding
operations and other bookkeeping for the file
to be completed.

• In some cases, not properly closing a file could
result in data loss.

www.umbc.edu

File Processing

• Another way to loop through the contents of a
file is to read it in with readlines() and
then loop through the resulting list

infile = open(someFile, "r")

for line in infile.readlines():

line processing here

infile.close()

www.umbc.edu

File Processing

• Python can treat the file itself as a sequence
of lines!

infile = open(someFile, "r")

for line in infile:

process the line here

infile.close()

www.umbc.edu

Example Program: Batch Usernames

• Batch mode processing is where program
input and output are done entirely with files

• The program is not designed to be interactive

• Let’s create usernames for a computer system
where the first and last names come from an
input file

www.umbc.edu

Example Program: Batch Usernames
userfile.py

Program to create a file of usernames in batch mode.

def main():

print ("This program creates a file of usernames from a")

print ("file of names.")

get the file names

infileName = input("What file are the names in? ")

outfileName = input("What file should the usernames go in? ")

open the files

infile = open(infileName, 'r')

outfile = open(outfileName, 'w')

[continued...]

www.umbc.edu

Example Program: Batch Usernames
[...continued]

process each line of the input file

for line in infile:

get the first and last names from line

first, last = line.split()

create a username

uname = (first[0]+last[:7]).lower()

write it to the output file

print(uname, file=outfile)

close both files

infile.close()

outfile.close()

print("Usernames have been written to", outfileName)

www.umbc.edu

Example Program: Batch Usernames

• Things to note:

– It’s not unusual for programs to have
multiple files open for reading and writing
at the same time

– The lower() method is used to convert
the names into all lower case, in the event
the names are mixed upper and lower case

www.umbc.edu

Announcements

• (Pre) Lab 6 will be released Friday on Blackboard

• Homework 4 is out

– Due by Tuesday (Oct 6th) at 8:59:59 PM

• Homework 1 re-grade and re-submit petitions must
be made to your TA before Friday @ 3 PM

• Exam 1 will be on October 14th and 15th

